

Technology possibilities High solid and solvent-free

Powder coatings

Challenges

- Uneven or large parts
- Invest in equipment
- Leveling

EB/UV cure

Challenges

Change coatings

technology

- Uneven or large parts
- Invest in equipment
- Adhesion

Water-based

Challenges

Reduction of VOC

Eliminate VOC

- · Early water resistance
- Forced drying: popping
- Drying time
- Humidity dependant water evaporation
- Foam
- Substrate wetting

High solids

Spray application Airless/ Airmix

high pressure, small nozzle size

Developing new high solids systems Requirements for additives

- > Development of an up-to-date formulation
- > Check for latest additive recommendations
 - Wetting and dispersing additives:
 - Viscosity reduction
 - Pigment stabilization
 - > Defoamers:
 - Special focus on airless application systems
 - > Rheology:
 - Improve sagging and settlement behavior in HS systems
 - > Surface additives:
 - Which are the best surface additives for HS systems?

Must haves

- Up-to-date additives in use
- Low cyclic siloxane content
- No SVHC
- Preferably 100% additives
- Good viscosity
- BTX free
- Tin free (catalyst and additives)
- ...

Developing new high solids systems High solids 2-pack PU solvent-borne

Pos.	Component	Function	Weight [g]
1	Hydroxy Acrylic Resin (75% solid)	Binder	43.3
2	DISPERBYK-2150	W&D additive	4.8
3	Butylacetate : Methoxypropylacetat 2:1	Solvent	1.1
4	CLAYTONE AF	Rheology additive	1.0
5	Phthalocyanine blue	Pigment	0.1
6	Inorganic pigment yellow	Pigment	1.7
7	Titanium dioxide	Pigment	17.1
8	Carbon black	Pigment	0.6
9	Precipitated barium sulphate	Filler	7.6
	Grinding 20 min at 17 r	m/s	
10	Hydroxy Acrylic Resin (75% solid)	Binder	8.4
11	Saturated Polyester Resin (100% solid)	Binder	10.0
12	Butylacetate : Methoxypropylacetat 2:1	Solvent	0.4
13	Butyl glycol acetate	Solvent	2.0
14	BYK-320	Surface additive	0.4
15	BYK-3760	Surface additive	0.4
16	BYK-LP D 24636	Defoamer	1.0
17	Mixed carboxylate catalyst	Catalyst	0.1
_			100.0

Pos.	Component	Function	Weight [g]
18	Aliphatic polyisocyanate (90% solid)	Hardener	32.5
19	Butylacetate	Solvent	12.8
			45.3

Total solids: ~73%

Developing new high solids systems

Wetting and dispersing additives - test method pre trials

Wetting and dispersing additives – example percentage calculation

Pigments

Extender / Filler

Titanium dioxide

Colored inorganic pigments

Organic pigments

Carbon black

Recommended wetting and dispersing additive dosage [% solids on pigment or filler]

0.2 - 2 %

0.8 - 3 %

4 -10 %

15 - 35 %

25 - 80 %

Additive solutions Wetting and dispersing additives – example percentage calculation

Pigment	Pigment amount [%]	W&D solids on pigment [%]	Additive amount solids on part A [%]
Phthalocyanine blue	0.1	45.0	0.04
Inorganic pigment yellow	1.7	10.0	0.17
Titanium dioxide	17.1	2.5	0.43
Carbon black	0.6	80.0	0.48
Precipitated barium sulphate	7.6	1.0	0.08
Total	27.1		1.20

➤ Dosage for first trials 1.2% solid W&D, part A

Additive solutions Wetting and dispersing additives – results first trials

A 1 150	Before storage			After storage		
Additive (1.2% solids on part A)	ΔΕ	Gloss 20°	Haze	ΔΕ	Gloss 20°	Haze
Control	2.99	53	357	2.34	82	35
ANTI-TERRA U 100	4.29	48	390	4.00	73	175
BYK-9076	3.46	89	4	3.52	81	8
BYK-9077	2.44	89	3	2.71	82	4
DISPERBYK-142	0.10	90	3	0.77	73	7
DISPERBYK-145	1.73	88	4	1.96	78	4
DISPERBYK-161	3.27	90	5	3.79	86	7
DISPERBYK-163	6.21	88	15	5.35	72	31
DISPERBYK-2013	5.08	89	19	3.12	85	4
DISPERBYK-2014	3.66	65	266	3.17	78	37
DISPERBYK-2055	1.23	89	2	0.77	82	2
DISPERBYK-2150	0.81	90	2	0.98	86	2
DISPERBYK-2155	1.65	90	4	1.18	84	2
DISPERBYK-2200	2.39	89	5	1.96	84	29
DISPERBYK-2205	2.22	89	2	2.09	82	5

➤ DISPERBYK-2150 shows a good and stable ΔE and stable gloss values

→ Trials with higher dosage of DISPERBYK-2150

Grinding time: 20min

Wetting and dispersing additives – ladder study

	Before storage			After storage		
Additive (% solids on part A)	ΔΕ	Gloss 20°	Haze	ΔΕ	Gloss 20°	Haze
Control	2.99	53	357	2.34	82	35
1.2% DISPERBYK-2150	0.81	90	2	0.98	86	2
2.0% DISPERBYK-2150	0.75	90	2	0.72	86	2
2.5% DISPERBYK-2150	0.45	89	2	0.46	88	2

An overdose can lead to poor stabilization / compatibility!

- ➤ 2.5% active substance DISPERBYK-2150 shows the best result before and after storage
- Slight settlement after storage
 - → Further trials with other rheology additives to improve sagging and settlement

Additive solutions Rheology additives in the millbase – pour out

➤ Next step → Spray application / Airless application

Rheology additives in the millbase – spray application

HVLP application **Airless application** > Further trials with other surface additives 2.5% as. DISPERBYK-2150, 1.0% CLAYTONE-AF, 0.2% BYK-3752 2.5% as. DISPERBYK-2150, 1.0% CLAYTONE-AF, 0.2% BYK-3752

Additive solutions Surface additives – screening trials

Additive (% delivery form on part A)	Leveling	Bénard cells
Control	4	5
0.8% BYK-310	2-3	2
0.3% BYK-313	1-2	3
0.4% BYK-320	1	2
0.2% BYK-322	2-3	2
0.2% BYK-333	2	2
0.5% BYK-361N	2	4
0.2% BYK-3752	2	4
0.2% BYK-3760	1-2	1-2
0.8% BYK-3761	2	4
0.2% BYK-3764	2	2
0.4% BYK-320 + 0.2% BYK-3760	1	1-2
0.4% BYK-320 + 0.4% BYK-3760	1	1

- ➤ BYK-320 shows an excellent leveling
- > BYK-3760 eliminates the Bénard cells

Evaluation:

5: bad leveling / strong Bénard cells formation

1: superb leveling / no Bénard cells visible

Surface additives – Bénard cells in HVLP application

Differences in spray applicationSpray Jet

ConventionalSpray Application

- Regular and homogeneous spray jet
- Very fine droplet size
- Typical pressure; 2 bar = 29 psi

AirlessSpray Application

- No regulation of spray jet
- Larger droplet size
- Typical pressure:
 180-190 bar = 2600 -2755 psi

Air Assisted Airless Spray Application

- Homogeneous spray jet
- Medium droplet size
- Typical pressure: 120 bar = 1740 psi+
 2-3 bar = 29 44 psi air support

Differences in spray applicationFoam entrapment

ConventionalSpray Application

- Medium foam stabilization
- Mainly macro foam (>100µm in diameter)
- · Low amounts of micro foam

Defoaming easier

AirlessSpray Application

- · A lot of foam
- Predominately micro foam (Size 10µm-70µm in diameter)
- No or minor macro foam formation

Defoaming more difficult

Surface additives – different application type

HVLP application

Airless application

➤ Defoaming especially in airless application needs to be optimized!

Final formulation - airless application

Pour out pre-test

Airless application

Developing new high solids systems High solids 2-pack PU solvent-borne final formulation

Pos.	Component	Function	Weight [g]
1	Hydroxy Acrylic Resin (75% solid)	Binder	43.3
2	DISPERBYK-2150	W&D additive	4.8
3	Butylacetate : Methoxypropylacetat 2:1	Solvent	1.1
4	CLAYTONE AF	Rheology additive	1.0
5	Phthalocyanine blue	Pigment	0.1
6	Inorganic pigment yellow	Pigment	1.7
7	Titanium dioxide	Pigment	17.1
8	Carbon black	Pigment	0.6
9	Precipitated barium sulphate	Filler	7.6
	Grinding 20 min at 17 r	n/s	
10	Hydroxy Acrylic Resin (75% solid)	Binder	8.4
11	Saturated Polyester Resin (100% solid)	Binder	10.0
12	Butylacetate : Methoxypropylacetat 2:1	Solvent	0.4
13	Butyl glycol acetate	Solvent	2.0
14	BYK-320	Surface additive	0.4
15	BYK-3760	Surface additive	0.4
16	BYK-LP D 24636	Defoamer	1.0
17	Mixed carboxylate catalyst	Catalyst	0.1
			100.0

Pos.	Component	Function	Weigl	nt [g]
18	Aliphatic polyisocyanate (90% solid)	Hardener		32.5
19	Butylacetate	Solvent		12.8
				45.3

Total solids: ~73%

Summary Additive solutions for high solids systems

Wetting and dispersing additives

Rheology

Surface

Defoamer

- DISPERBYK-2150
- DISPERBYK-2205
- DISPERBYK-2013
- Development of a new tailor-made wetting and dispersing additive ongoing

- CLAYTONE-AF
- CLAYTONE-40
- RHEOBYK-7410 CA and family

Substrate wetting, COF adjustment, anti-crater

- BYK-3760
- BYK-3764

Leveling

- BYK-320
- BYK-399

- BYK-LP D 24636
- BYK-052N
- BYK-A 505
- BYK-1790
- BYK-A 530

Summary Additive solutions for coatings systems

Optimized paint formulation

- Sufficient mixing of raw materials
- Optimized pigment dispersions
- Improved application properties
- Perfect appearance
- Long-term storage stability

Dosage & Incorporation

- Dosage level of different additives
 - Start with recommendation
 - Dosage studies for optimal performance
- Point of addition
- Duration and shear force of incorporation

Evaluation

- Dosage studies
- Storage tests
- Synergies and side effects
- Selected test methods
 - Different pre-tests for different problems
 - Actual application method

